Building Event-Driven Microservices

· "O'Reilly Media, Inc."
3.0
1 則評論
電子書
324
頁數
符合資格
評分和評論未經驗證 瞭解詳情

關於這本電子書

Organizations today often struggle to balance business requirements with ever-increasing volumes of data. Additionally, the demand for leveraging large-scale, real-time data is growing rapidly among the most competitive digital industries. Conventional system architectures may not be up to the task. With this practical guide, you’ll learn how to leverage large-scale data usage across the business units in your organization using the principles of event-driven microservices.

Author Adam Bellemare takes you through the process of building an event-driven microservice-powered organization. You’ll reconsider how data is produced, accessed, and propagated across your organization. Learn powerful yet simple patterns for unlocking the value of this data. Incorporate event-driven design and architectural principles into your own systems. And completely rethink how your organization delivers value by unlocking near-real-time access to data at scale.

You’ll learn:

  • How to leverage event-driven architectures to deliver exceptional business value
  • The role of microservices in supporting event-driven designs
  • Architectural patterns to ensure success both within and between teams in your organization
  • Application patterns for developing powerful event-driven microservices
  • Components and tooling required to get your microservice ecosystem off the ground

評分和評論

3.0
1 則評論

關於作者

Adam Bellemare is a Staff Engineer, Data Platform at Flipp. He's held this position since 2017. He joined Flipp in 2014 as a senior developer at Flipp. Prior to that, he held positions in embedded software development and quality assurance. His expertise includes: Devops (Kafka, Spark, Mesos, Zookeeper Clusters. Programmatic Building, scaling, destroying); Technical Leadership (Bringing Avro formatting to our data end-to-end, championing Kafka as the event-driven microservice bus, prototyping JRuby, Scala and Java Kafka clients and focusing on removing technical impediments to allow for product delivery); Software Development (Building microservices in Java and Scala using Spark and Kafka libraries); and Data Engineering (Reshaping the way that behavioral data is collected from user devices and shared with our Machine Learning, Billing and Analytics teams).

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。