Classical Fourier Analysis: Edition 3

· Graduate Texts in Mathematics 249. raamat · Springer
4,0
2 arvustust
E-raamat
638
lehekülge
Hinnangud ja arvustused pole kinnitatud.  Lisateave

Teave selle e-raamatu kohta

The primary goal of this book is to present the theoretical foundation of the field of Euclidean Harmonic analysis. This book contains the classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood-Paley theory. This book is mainly addressed to graduate students in mathematics. The prerequisites are satisfactory completion of courses in real and complex variables. This book is intended to present the selected topics in depth and stimulate further study.

This third edition includes a new chapter entitled "Topics on Fourier series," which includes sections on Gibbs phenomenon, summability methods and Jackson's theorem, Tauberian theorems, spherical Fourier inversion, and Fourier transforms on the line. The new chapter ties really well with the material in the existing chapter 3 "Fourier Analysis on the Torus" and will prepare the students for (the existing) chapter 4.

In addition to a new chapter, the third edition contains 1000 different corrections and improvements in the existing text, more examples and applications, new and more relevant hints for the existing exercises, about 20-30 new exercises in the existing chapters, and improved references.

Hinnangud ja arvustused

4,0
2 arvustust

Teave autori kohta

Loukas Grafakos is a Professor of Mathematics at the University of Missouri at Columbia.

Hinnake seda e-raamatut

Andke meile teada, mida te arvate.

Lugemisteave

Nutitelefonid ja tahvelarvutid
Installige rakendus Google Play raamatud Androidile ja iPadile/iPhone'ile. See sünkroonitakse automaatselt teie kontoga ja see võimaldab teil asukohast olenemata lugeda nii võrgus kui ka võrguühenduseta.
Sülearvutid ja arvutid
Google Playst ostetud audioraamatuid saab kuulata arvuti veebibrauseris.
E-lugerid ja muud seadmed
E-tindi seadmetes (nt Kobo e-lugerid) lugemiseks peate faili alla laadima ja selle oma seadmesse üle kandma. Failide toetatud e-lugeritesse teisaldamiseks järgige üksikasjalikke abikeskuse juhiseid.