Classical Fourier Analysis: Edition 3

· Graduate Texts in Mathematics Libro 249 · Springer
4,0
2 recensioni
Ebook
638
pagine
Valutazioni e recensioni non sono verificate  Scopri di più

Informazioni su questo ebook

The primary goal of this book is to present the theoretical foundation of the field of Euclidean Harmonic analysis. This book contains the classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood-Paley theory. This book is mainly addressed to graduate students in mathematics. The prerequisites are satisfactory completion of courses in real and complex variables. This book is intended to present the selected topics in depth and stimulate further study.

This third edition includes a new chapter entitled "Topics on Fourier series," which includes sections on Gibbs phenomenon, summability methods and Jackson's theorem, Tauberian theorems, spherical Fourier inversion, and Fourier transforms on the line. The new chapter ties really well with the material in the existing chapter 3 "Fourier Analysis on the Torus" and will prepare the students for (the existing) chapter 4.

In addition to a new chapter, the third edition contains 1000 different corrections and improvements in the existing text, more examples and applications, new and more relevant hints for the existing exercises, about 20-30 new exercises in the existing chapters, and improved references.

Valutazioni e recensioni

4,0
2 recensioni

Informazioni sull'autore

Loukas Grafakos is a Professor of Mathematics at the University of Missouri at Columbia.

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.