After early work in combinatorics and elementary number theory, Lambek became a distinguished algebraist (notably in ring theory). In the 1960s, he began to work in category theory, categorical algebra, logic, proof theory, and foundations of computability. In a parallel development, beginning in the late 1950s and for the rest of his career, Lambek also worked extensively in mathematical linguistics and computational approaches to natural languages. He and his collaborators perfected production and type grammars for numerous natural languages. Lambek grammars form an early noncommutative precursor to Girard’s linear logic. In a surprising development (2000), he introduced a novel and deeper algebraic framework (which he called pregroup grammars) for analyzing natural language, along with algebraic, higher category, and proof-theoretic semantics.
This book is of interest to mathematicians, logicians, linguists, and computer scientists.