Cluster Sets

· Springer Science & Business Media
E-boek
136
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

For the first systematic investigations of the theory of cluster sets of analytic functions, we are indebted to IVERSEN [1-3J and GROSS [1-3J about forty years ago. Subsequent important contributions before 1940 were made by SEIDEL [1-2J, DOOE [1-4J, CARTWRIGHT [1-3J and BEURLING [1]. The investigations of SEIDEL and BEURLING gave great impetus and interest to Japanese mathematicians; beginning about 1940 some contributions were made to the theory by KUNUGUI [1-3J, IRIE [IJ, TOKI [IJ, TUMURA [1-2J, KAMETANI [1-4J, TsuJI [4J and NOSHIRO [1-4J. Recently, many noteworthy advances have been made by BAGEMIHL, SEIDEL, COLLINGWOOD, CARTWRIGHT, HERVE, LEHTO, LOHWATER, MEIER, OHTSUKA and many other mathematicians. The main purpose of this small book is to give a systematic account on the theory of cluster sets. Chapter I is devoted to some definitions and preliminary discussions. In Chapter II, we treat extensions of classical results on cluster sets to the case of single-valued analytic functions in a general plane domain whose boundary contains a compact set of essential singularities of capacity zero; it is well-known that HALLSTROM [2J and TsuJI [7J extended independently Nevanlinna's theory of meromorphic functions to the case of a compact set of essential singUlarities of logarithmic capacity zero. Here, Ahlfors' theory of covering surfaces plays a funda mental role. Chapter III "is concerned with functions meromorphic in the unit circle.

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.