Cluster Sets

· Springer Science & Business Media
Carte electronică
136
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

For the first systematic investigations of the theory of cluster sets of analytic functions, we are indebted to IVERSEN [1-3J and GROSS [1-3J about forty years ago. Subsequent important contributions before 1940 were made by SEIDEL [1-2J, DOOE [1-4J, CARTWRIGHT [1-3J and BEURLING [1]. The investigations of SEIDEL and BEURLING gave great impetus and interest to Japanese mathematicians; beginning about 1940 some contributions were made to the theory by KUNUGUI [1-3J, IRIE [IJ, TOKI [IJ, TUMURA [1-2J, KAMETANI [1-4J, TsuJI [4J and NOSHIRO [1-4J. Recently, many noteworthy advances have been made by BAGEMIHL, SEIDEL, COLLINGWOOD, CARTWRIGHT, HERVE, LEHTO, LOHWATER, MEIER, OHTSUKA and many other mathematicians. The main purpose of this small book is to give a systematic account on the theory of cluster sets. Chapter I is devoted to some definitions and preliminary discussions. In Chapter II, we treat extensions of classical results on cluster sets to the case of single-valued analytic functions in a general plane domain whose boundary contains a compact set of essential singularities of capacity zero; it is well-known that HALLSTROM [2J and TsuJI [7J extended independently Nevanlinna's theory of meromorphic functions to the case of a compact set of essential singUlarities of logarithmic capacity zero. Here, Ahlfors' theory of covering surfaces plays a funda mental role. Chapter III "is concerned with functions meromorphic in the unit circle.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.