Cluster Sets

· Springer Science & Business Media
E-kitap
136
Sayfa
Puanlar ve yorumlar doğrulanmaz Daha Fazla Bilgi

Bu e-kitap hakkında

For the first systematic investigations of the theory of cluster sets of analytic functions, we are indebted to IVERSEN [1-3J and GROSS [1-3J about forty years ago. Subsequent important contributions before 1940 were made by SEIDEL [1-2J, DOOE [1-4J, CARTWRIGHT [1-3J and BEURLING [1]. The investigations of SEIDEL and BEURLING gave great impetus and interest to Japanese mathematicians; beginning about 1940 some contributions were made to the theory by KUNUGUI [1-3J, IRIE [IJ, TOKI [IJ, TUMURA [1-2J, KAMETANI [1-4J, TsuJI [4J and NOSHIRO [1-4J. Recently, many noteworthy advances have been made by BAGEMIHL, SEIDEL, COLLINGWOOD, CARTWRIGHT, HERVE, LEHTO, LOHWATER, MEIER, OHTSUKA and many other mathematicians. The main purpose of this small book is to give a systematic account on the theory of cluster sets. Chapter I is devoted to some definitions and preliminary discussions. In Chapter II, we treat extensions of classical results on cluster sets to the case of single-valued analytic functions in a general plane domain whose boundary contains a compact set of essential singularities of capacity zero; it is well-known that HALLSTROM [2J and TsuJI [7J extended independently Nevanlinna's theory of meromorphic functions to the case of a compact set of essential singUlarities of logarithmic capacity zero. Here, Ahlfors' theory of covering surfaces plays a funda mental role. Chapter III "is concerned with functions meromorphic in the unit circle.

Bu e-kitaba puan verin

Düşüncelerinizi bizimle paylaşın.

Okuma bilgileri

Akıllı telefonlar ve tabletler
Android ve iPad/iPhone için Google Play Kitaplar uygulamasını yükleyin. Bu uygulama, hesabınızla otomatik olarak senkronize olur ve nerede olursanız olun çevrimiçi veya çevrimdışı olarak okumanıza olanak sağlar.
Dizüstü bilgisayarlar ve masaüstü bilgisayarlar
Bilgisayarınızın web tarayıcısını kullanarak Google Play'de satın alınan sesli kitapları dinleyebilirsiniz.
e-Okuyucular ve diğer cihazlar
Kobo eReader gibi e-mürekkep cihazlarında okumak için dosyayı indirip cihazınıza aktarmanız gerekir. Dosyaları desteklenen e-kitap okuyuculara aktarmak için lütfen ayrıntılı Yardım Merkezi talimatlarını uygulayın.