Combinatorial Knot Theory

· Series On Knots And Everything 76권 · World Scientific
eBook
208
페이지
적용 가능
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

A classic knot is an embedded simple loop in 3-dimensional space. It can be described as a 4-valent planar graph or network in the horizontal plane, with the vertices or crossings corresponding to double points of a projection. At this stage we have the shadow of the knot defined by the projection. We can reconstruct the knot by lifting the crossings into two points in space, one above the other. This information is preserved at the vertices by cutting the arc which appears to go under the over crossing arc. We can then act on this diagram of the knot using the famous Reidemeister moves to mimic the motion of the knot in space. The result is classic combinatorial knot theory. In recent years, many different types of knot theories have been considered where the information stored at the crossings determines how the Reidemeister moves are used, if at all.In this book, we look at all these new theories systematically in a way which any third-year undergraduate mathematics student would understand. This book can form the basis of an undergraduate course or as an entry point for a postgraduate studying topology.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.