Computational Algebraic Geometry

·
· Progress in Mathematics Книга 109 · Springer Science & Business Media
Електронна книга
332
Сторінки
Google не перевіряє оцінки й відгуки. Докладніше.

Про цю електронну книгу

The theory and practice of computation in algebraic geometry and related domains, from a mathematical point of view, has generated an increasing interest both for its rich theoretical possibilities and its usefulness in applications in science and engineering. In fact, it is one of the master keys for future significant improvement of the computer algebra systems (e.g., Reduce, Macsyma, Maple, Mathematica, Axiom, Macaulay, etc.) that have become such useful tools for many scientists in a variety of disciplines. The major themes covered in this volume, arising from papers p- sented at the conference MEGA-92 were: - Effective methods and complexity issues in commutative algebra, projective geometry, real geometry, and algebraic number theory - Algebra-geometric methods in algebraic computing and applica tions. MEGA-92 was the second of a new series of European conferences on the general theme of Effective Methods in Algebraic Geometry. It was held in Nice, France, on April 21-25, 1992 and built on the themes presented at MEGA-90 (Livomo, Italy, April 17-21, 1990). The next conference - MEGA-94 - will be held in Santander, Spain in the spring of 1994. The Organizing committee that initiatiod and supervises this bi enniel conference consists of A. Conte (Torino), J.H. Davenport (Bath), A. Galligo (Nice), D. Yu. Grigoriev (Petersburg), J. Heintz (Buenos Aires), W. Lassner (Leipzig), D. Lazard (paris), H.M. MOller (Hagen), T. Mora (Genova), M. Pohst (DUsseldort), T. Recio (Santander), J.J.

Оцініть цю електронну книгу

Повідомте нас про свої враження.

Як читати

Смартфони та планшети
Установіть додаток Google Play Книги для Android і iPad або iPhone. Він автоматично синхронізується з вашим обліковим записом і дає змогу читати книги в режимах онлайн і офлайн, де б ви не були.
Портативні та настільні комп’ютери
Ви можете слухати аудіокниги, куплені в Google Play, у веб-переглядачі на комп’ютері.
eReader та інші пристрої
Щоб користуватися пристроями для читання електронних книг із технологією E-ink, наприклад Kobo, вам знадобиться завантажити файл і перенести його на відповідний пристрій. Докладні вказівки з перенесення файлів на підтримувані пристрої можна знайти в Довідковому центрі.