Computational and Statistical Approaches to Genomics

·
· Springer Science & Business Media
電子書籍
329
ページ
評価とレビューは確認済みではありません 詳細

この電子書籍について

At the beginning of the post-sequencing era, biology must now work with the enormous amounts of quantitative data being amassed and must render complex problems in mathematical terms, with all of the computational effort that entails. This phenomenon is perhaps best exemplified by the interdisciplinary scientific activity caused by the advent of high-throughput cDNA microarray technology, which facilitates large-scale surveys of gene expression. Biologists must now work together with engineers, statisticians, computer scientists, and other specialists, in order to attain a holistic understanding of the complex relationship between genes within the genome and uncover genetic function and regulation.
Computational and Statistical Genomics aims to help researchers deal with current genomic challenges. Topics covered include:

  • overviews of the role of supercomputers in genomics research, the existing challenges and directions in image processing for microarray technology, and web-based tools for microarray data analysis;
  • approaches to the global modeling and analysis of gene regulatory networks and transcriptional control, using methods, theories, and tools from signal processing, machine learning, information theory, and control theory;
  • state-of-the-art tools in Boolean function theory, time-frequency analysis, pattern recognition, and unsupervised learning, applied to cancer classification, identification of biologically active sites, and visualization of gene expression data;
  • crucial issues associated with statistical analysis of microarray data, statistics and stochastic analysis of gene expression levels in a single cell, statistically sound design of microarray studies and experiments; and
  • biological and medical implications of genomics research.

This book is for any researcher, in academia and industry, in biology, computer science, statistics, or engineering, involved in genomic problems. It could also be used as an advanced level textbook in a course focusing on genomic signals, information processing, or genome biology.

著者について

Wei Zhang is an Associate Professor in the Cancer Genomics Laboratory, University of Texas M.D. Anderson Cancer Center Ilya Shmulevich is an Assistant Professor in the Cancer Genomics Laboratory, University of Texas M.D. Anderson Cancer Center.

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。