Confluent String Rewriting

· Monographs in Theoretical Computer Science. An EATCS Series Bok 14 · Springer Science & Business Media
E-bok
126
Sidor
Betyg och recensioner verifieras inte  Läs mer

Om den här e-boken

Replacement systems, such as term rewriting systems, tree manipulat ing systems, and graph grammars, have been used in Computer Science in the context of theorem proving, program optimization, abstract data types, algebraic simplification, and symbolic comput ation. Replacement systems for strings arose about seventy years earlier in the area of combinatory logic and group theory. The most natural and appropriate formalism for dealing with string rewriting is the notion of a semi-Thue system and this monograph treats its central aspects. The reduction relation is here defined firstly by the direction of the rules and secondly by some metric that yields efficient algorithms. These systems are general enough to discuss the basic notions of arbitrary replacement systems, such as termination, confluence, and the Church-Rosser property in its original meaning. Confluent semi-Thue systems in which each and every derivation consists of finitely many steps only are called complete; they guarantee the existence of unique normal forms as canonical representatives of the Thue congruence classes. Each such system can be considered a nondeterministic algorithm for the word problem which works correctly without backtracking. This is often conceptually simpler and more elegant than an ad hoc construction. In many cases a replace ment system can be altered to a complete system by the Knuth-Bendix completion method.

Betygsätt e-boken

Berätta vad du tycker.

Läsinformation

Smartphones och surfplattor
Installera appen Google Play Böcker för Android och iPad/iPhone. Appen synkroniseras automatiskt med ditt konto så att du kan läsa online eller offline var du än befinner dig.
Laptops och stationära datorer
Du kan lyssna på ljudböcker som du har köpt på Google Play via webbläsaren på datorn.
Läsplattor och andra enheter
Om du vill läsa boken på enheter med e-bläck, till exempel Kobo-läsplattor, måste du ladda ned en fil och överföra den till enheten. Följ anvisningarna i hjälpcentret om du vill överföra filerna till en kompatibel läsplatta.