Conjugate Duality in Convex Optimization

¡ Lecture Notes in Economics and Mathematical Systems āĻ•āĻŋāĻ¤āĻžāĻĒ 637 ¡ Springer Science & Business Media
āĻ‡āĻŦā§āĻ•
164
āĻĒā§ƒāĻˇā§āĻ āĻž
āĻŽā§‚āĻ˛ā§āĻ¯āĻžāĻ‚āĻ•āĻ¨ āĻ†ā§°ā§ āĻĒā§°ā§āĻ¯āĻžāĻ˛ā§‹āĻšāĻ¨āĻž āĻ¸āĻ¤ā§āĻ¯āĻžāĻĒāĻ¨ āĻ•ā§°āĻž āĻšā§‹ā§ąāĻž āĻ¨āĻžāĻ‡  āĻ…āĻ§āĻŋāĻ• āĻœāĻžāĻ¨āĻ•

āĻāĻ‡ āĻ‡āĻŦā§āĻ•āĻ–āĻ¨ā§° āĻŦāĻŋāĻˇā§Ÿā§‡

The results presented in this book originate from the last decade research work of the author in the ?eld of duality theory in convex optimization. The reputation of duality in the optimization theory comes mainly from the major role that it plays in formulating necessary and suf?cient optimality conditions and, consequently, in generatingdifferent algorithmic approachesfor solving mathematical programming problems. The investigations made in this work prove the importance of the duality theory beyond these aspects and emphasize its strong connections with different topics in convex analysis, nonlinear analysis, functional analysis and in the theory of monotone operators. The ?rst part of the book brings to the attention of the reader the perturbation approach as a fundamental tool for developing the so-called conjugate duality t- ory. The classical Lagrange and Fenchel duality approaches are particular instances of this general concept. More than that, the generalized interior point regularity conditions stated in the past for the two mentioned situations turn out to be p- ticularizations of the ones given in this general setting. In our investigations, the perturbationapproachrepresentsthestartingpointforderivingnewdualityconcepts for several classes of convex optimization problems. Moreover, via this approach, generalized Moreau–Rockafellar formulae are provided and, in connection with them, a new class of regularity conditions, called closedness-type conditions, for both stable strong duality and strong duality is introduced. By stable strong duality we understand the situation in which strong duality still holds whenever perturbing the objective function of the primal problem with a linear continuous functional.

āĻāĻ‡ āĻ‡āĻŦā§āĻ•āĻ–āĻ¨āĻ• āĻŽā§‚āĻ˛ā§āĻ¯āĻžāĻ‚āĻ•āĻ¨ āĻ•ā§°āĻ•

āĻ†āĻŽāĻžāĻ• āĻ†āĻĒā§‹āĻ¨āĻžā§° āĻŽāĻ¤āĻžāĻŽāĻ¤ āĻœāĻ¨āĻžāĻ“āĻ•āĨ¤

āĻĒāĻĸāĻŧāĻžā§° āĻ¨āĻŋāĻ°ā§āĻĻā§‡āĻļāĻžā§ąāĻ˛ā§€

āĻ¸ā§āĻŽāĻžā§°ā§āĻŸāĻĢ’āĻ¨ āĻ†ā§°ā§ āĻŸā§‡āĻŦāĻ˛ā§‡āĻŸ
Android āĻ†ā§°ā§ iPad/iPhoneā§° āĻŦāĻžāĻŦā§‡ Google Play Books āĻāĻĒāĻŸā§‹ āĻ‡āĻ¨āĻˇā§āĻŸāĻ˛ āĻ•ā§°āĻ•āĨ¤ āĻ‡ āĻ¸ā§āĻŦāĻ¯āĻŧāĻ‚āĻ•ā§āĻ°āĻŋāĻ¯āĻŧāĻ­āĻžā§ąā§‡ āĻ†āĻĒā§‹āĻ¨āĻžā§° āĻāĻ•āĻžāĻ‰āĻŖā§āĻŸā§° āĻ¸ā§ˆāĻ¤ā§‡ āĻ›āĻŋāĻ‚āĻ• āĻšāĻ¯āĻŧ āĻ†ā§°ā§ āĻ†āĻĒā§āĻ¨āĻŋ āĻ¯'āĻ¤ā§‡ āĻ¨āĻžāĻĨāĻžāĻ•āĻ• āĻ¤'āĻ¤ā§‡āĻ‡ āĻ•ā§‹āĻ¨ā§‹ āĻ…āĻĄāĻŋāĻ…'āĻŦā§āĻ• āĻ…āĻ¨āĻ˛āĻžāĻ‡āĻ¨ āĻŦāĻž āĻ…āĻĢāĻ˛āĻžāĻ‡āĻ¨āĻ¤ āĻļā§āĻ¨āĻŋāĻŦāĻ˛ā§ˆ āĻ¸ā§āĻŦāĻŋāĻ§āĻž āĻĻāĻŋāĻ¯āĻŧā§‡āĨ¤
āĻ˛ā§‡āĻĒāĻŸāĻĒ āĻ†ā§°ā§ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžā§°
āĻ†āĻĒā§āĻ¨āĻŋ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžā§°ā§° ā§ąā§‡āĻŦ āĻŦā§āĻ°āĻžāĻ‰āĻœāĻžā§° āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻ•ā§°āĻŋ Google PlayāĻ¤ āĻ•āĻŋāĻ¨āĻž āĻ…āĻĄāĻŋāĻ…'āĻŦā§āĻ•āĻ¸āĻŽā§‚āĻš āĻļā§āĻ¨āĻŋāĻŦ āĻĒāĻžā§°ā§‡āĨ¤
āĻ‡-ā§°ā§€āĻĄāĻžā§° āĻ†ā§°ā§ āĻ…āĻ¨ā§āĻ¯ āĻĄāĻŋāĻ­āĻžāĻ‡āĻš
Kobo eReadersā§° āĻĻā§°ā§‡ āĻ‡-āĻšāĻŋā§ŸāĻžāĻāĻšā§€ā§° āĻĄāĻŋāĻ­āĻžāĻ‡āĻšāĻ¸āĻŽā§‚āĻšāĻ¤ āĻĒā§āĻŋāĻŦāĻ˛ā§ˆ, āĻ†āĻĒā§āĻ¨āĻŋ āĻāĻŸāĻž āĻĢāĻžāĻ‡āĻ˛ āĻĄāĻžāĻ‰āĻ¨āĻ˛â€™āĻĄ āĻ•ā§°āĻŋ āĻ¸ā§‡āĻ‡āĻŸā§‹ āĻ†āĻĒā§‹āĻ¨āĻžā§° āĻĄāĻŋāĻ­āĻžāĻ‡āĻšāĻ˛ā§ˆ āĻ¸ā§āĻĨāĻžāĻ¨āĻžāĻ¨ā§āĻ¤ā§°āĻŖ āĻ•ā§°āĻŋāĻŦ āĻ˛āĻžāĻ—āĻŋāĻŦāĨ¤ āĻ¸āĻŽā§°ā§āĻĨāĻŋāĻ¤ āĻ‡-ā§°āĻŋāĻĄāĻžā§°āĻ˛ā§ˆ āĻĢāĻžāĻ‡āĻ˛āĻŸā§‹ āĻ•ā§‡āĻ¨ā§‡āĻ•ā§ˆ āĻ¸ā§āĻĨāĻžāĻ¨āĻžāĻ¨ā§āĻ¤ā§° āĻ•ā§°āĻŋāĻŦ āĻœāĻžāĻ¨āĻŋāĻŦāĻ˛ā§ˆ āĻ¸āĻšāĻžāĻ¯āĻŧ āĻ•ā§‡āĻ¨ā§āĻĻā§ā§°āĻ¤ āĻĨāĻ•āĻž āĻ¸āĻŦāĻŋāĻļā§‡āĻˇ āĻ¨āĻŋā§°ā§āĻĻā§‡āĻļāĻžā§ąāĻ˛ā§€ āĻšāĻžāĻ“āĻ•āĨ¤

āĻ›āĻŋā§°āĻŋāĻœāĻŸā§‹ āĻ…āĻŦā§āĻ¯āĻžāĻšāĻ¤ ā§°āĻžāĻ–āĻ•

Radu Ioan Botā§° āĻĻā§āĻŦāĻžā§°āĻž āĻ†ā§°ā§ āĻ…āĻ§āĻŋāĻ•

āĻāĻ•ā§‡āĻ§ā§°āĻŖā§° āĻ‡-āĻŦā§āĻ•