Continuous Martingales and Brownian Motion

·
· Grundlehren der mathematischen Wissenschaften Book 293 · Springer Science & Business Media
eBook
536
Pages
Ratings and reviews aren’t verified  Learn more

About this eBook

This book focuses on the probabilistic theory ofBrownian motion. This is a good topic to center a discussion around because Brownian motion is in the intersec tioll of many fundamental classes of processes. It is a continuous martingale, a Gaussian process, a Markov process or more specifically a process with in dependent increments; it can actually be defined, up to simple transformations, as the real-valued, centered process with independent increments and continuous paths. It is therefore no surprise that a vast array of techniques may be success fully applied to its study and we, consequently, chose to organize the book in the following way. After a first chapter where Brownian motion is introduced, each of the following ones is devoted to a new technique or notion and to some of its applications to Brownian motion. Among these techniques, two are of para mount importance: stochastic calculus, the use ofwhich pervades the whole book and the powerful excursion theory, both of which are introduced in a self contained fashion and with a minimum of apparatus. They have made much easier the proofs of many results found in the epoch-making book of Itö and McKean: Diffusion Processes and their Sampie Paths, Springer (1965).

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.