This thesis primarily focuses on the design and low-complexity implementation techniques of VDFs and presents three main contributions. Firstly, it proposes three VDF realizations for simultaneous lowpass filtering and equalization using polynomial channel models, with systematic design procedures based on minimax optimization for all the proposed structures. In addition, a fast design method for the VDFs with several variable parameters, which can substantially decrease the design time, is presented. Secondly, it introduces frequency-domain implementations of VDFs using the overlap-save technique. Based on the assumption that these filters have been designed using a common design approach based on optimizing the impulse response coefficients, the filter DFT coefficients are proposed to be implemented as fixed, hybrid, or variable weights. Lastly, the thesis presents an efficient design approach for a variable-bandwidth digital filter implemented in the frequency domain using the overlap-save method. The proposed approach is based on a hybrid of frequency sampling and optimization, allowing for direct optimization of the DFT coefficients considering the filter frequency-domain implementation and thereby noticeably reducing the cost of implementation and an online update of the DFT filter coefficients when the bandwidth is varied.
Reduktion av komplexitet är en av huvudfrågorna för digital signalbehandling (DSP) algoritmer, särskilt i kommunikationssystem där varje ny generation ställer nya krav på att öka datahastigheter och förbättrad noggrannhet positionering, vilket leder till en ökning av strömförbrukningen och kretsytan. För att möta dessa krav och samtidigt hitta en avvägning mellan hög prestanda och låg implementeringskostnad behöver mer sofistikerade DSP-algoritmer utvecklas. Senaste kommunikationsstandarder kräver flexibla, adaptiva system som kan frekvensdomäninställning i realtid. Variabla digitala filter (VDF) tillgodoser dessa behov genom att möjliggöra "on-the-fly" frekvenssvarsjusteringar utan behov av onlinefilterdesign. Nyckelegenskapen hos VDF:er är att de bara kräver en justering av en eller ett fåtal parametrar för att ändra deras egenskaper, utan behov av omfattande ytterligare beräkningar. De flesta VDF-koefficienter förblir fixerade efter den ursprungliga designen, vilket möjliggör effektiv hårdvaruimplementering. Detta gör VDF:er väsentliga för modern adaptiv kommunikationsteknik.
Den här avhandlingen fokuserar främst på design och implementeringstekniker med låg komplexitet för VDF:er och presenterar tre huvudsakliga bidrag. För det första föreslår den tre VDF-realiseringar för samtidig lågpassfiltrering och utjämning med användning av polynomkanalmodeller, med systematiska designprocedurer baserade på minimax optimering för alla föreslagna strukturer. Dessutom presenteras en snabb designmetod för VDF:erna med flera variabla parametrar, som avsevärt kan minska designtiden. För det andra introducerar den frekvensdomänimplementationer av VDF:er med överlappningssparateknik. Baserat på antagandet att dessa filter har utformats med användning av en gemensam designmetod baserad på optimering av impulssvarskoefficienterna, föreslås filtrets DFT-koefficienter implementeras som fasta, hybrida eller variabla vikter. Slutligen presenterar avhandlingen en effektiv designansats för ett digitalt filter med variabel bandbredd implementerat i frekvensdomänen med användning av överlappningssparametoden. Det föreslagna tillvägagångssättet är baserat på en hybrid av frekvenssampling och optimering, vilket möjliggör direkt optimering av DFT-koefficienterna med tanke på implementeringen av filterfrekvensdomänen och därigenom märkbart minska kostnaden för implementering och en onlineuppdatering av DFT-filterkoefficienterna när bandbredden är varierande.