Convergence Problems of Orthogonal Series

· Elsevier
E-knjiga
362
str.
Ispunjava uvjete
Ocjene i recenzije nisu potvrđene  Saznajte više

O ovoj e-knjizi

Convergence Problems of Orthogonal Series deals with the theory of convergence and summation of the general orthogonal series in relation to the general theory and classical expansions. The book reviews orthogonality, orthogonalization, series of orthogonal functions, complete orthogonal systems, and the Riesz-Fisher theorem. The text examines Jacobi polynomials, Haar's orthogonal system, and relations to the theory of probability using Rademacher's and Walsh's orthogonal systems. The book also investigates the convergence behavior of orthogonal series by methods belonging to the general theory of series. The text explains some Tauberian theorems and the classical Abel transform of the partial sums of a series which the investigator can use in the theory of orthogonal series. The book examines the importance of the Lebesgue functions for convergence problems, the generalization of the Walsh series, the order of magnitude of the Lebesgue functions, and the Lebesgue functions of the Cesaro summation. The text also deals with classical convergence problems in which general orthogonal series have limited significance as orthogonal expansions react upon the structural properties of the expanded function. This reaction happens under special assumptions concerning the orthogonal system in whose functions the expansion proceeds. The book can prove beneficial to mathematicians, students, or professor of calculus and advanced mathematics.

Ocijenite ovu e-knjigu

Recite nam što mislite.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play knjige za Android i iPad/iPhone. Automatski se sinkronizira s vašim računom i omogućuje vam da čitate online ili offline gdje god bili.
Prijenosna i stolna računala
Audioknjige kupljene na Google Playu možete slušati pomoću web-preglednika na računalu.
Elektronički čitači i ostali uređaji
Za čitanje na uređajima s elektroničkom tintom, kao što su Kobo e-čitači, trebate preuzeti datoteku i prenijeti je na svoj uređaj. Slijedite detaljne upute u centru za pomoć za prijenos datoteka na podržane e-čitače.