Convex and Discrete Geometry

· Grundlehren der mathematischen Wissenschaften Libro 336 · Springer Science & Business Media
eBook
580
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

Convex and Discrete Geometry is an area of mathematics situated between analysis, geometry and discrete mathematics with numerous relations to other areas. The book gives an overview of major results, methods and ideas of convex and discrete geometry and its applications. Besides being a graduate-level introduction to the field, it is a practical source of information and orientation for convex geometers. It should also be of use to people working in other areas of mathematics and in the applied fields.

Acerca del autor

1959-66 Study of mathematics and physics, Univ Vienna, Univ Kansas

1996 PhD, Univ Vienna

1966-71 Assistant, Techn.Univ.Vienna

1968 Award of the ÖMG

1969 (Junior) Kardinal Innitzer Award

1970- Docent, Techn. Univ. Vienna

1971-76 Full Professor of Mathematics, Univ. Linz

1976- Full Professor of Mathematical Analysis, Techn. Univ. Vienna

1978-82 President, Austrian Math. Soc.

1981-87 Head, Division of Mathematics, Techn. Univ. Vienna

1985 Hon.Member, Accademia Nazionale di Scienze, Letter e Arti, Modena

1988 Corr. Member, Austrian Academy of Sciences

1991 Full Member, Austrian Academy of Sciences

2000 Hon. Doctorate, Univ. Turin

2001 Hon. Doctorate, Univ. Siegen

2001 Memorial Medal, Fac. Math and Physics, Charles Univ. Prague

2002 Korr. Member, Bayer. Akad. Wiss.

2003 Foreign Member, Russia Acad. Sciences

More than 100 articles and books in the geometry of numbers, convex and discrete geometry, and analysis. Extended visits to Budapest, Bologna, Toronto, Hobart (Tasmania), Chandigarh, Turin, Messina, Moscow-St.Petersburg, Warsaw, Sofia, Guanajuato, Peking, Tel Aviv-Jerusalem, Vancouver, Heraklion, Alicante.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.