Convex and Discrete Geometry

· Grundlehren der mathematischen Wissenschaften Livro 336 · Springer Science & Business Media
E-book
580
Páginas
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

Convex and Discrete Geometry is an area of mathematics situated between analysis, geometry and discrete mathematics with numerous relations to other areas. The book gives an overview of major results, methods and ideas of convex and discrete geometry and its applications. Besides being a graduate-level introduction to the field, it is a practical source of information and orientation for convex geometers. It should also be of use to people working in other areas of mathematics and in the applied fields.

Sobre o autor

1959-66 Study of mathematics and physics, Univ Vienna, Univ Kansas

1996 PhD, Univ Vienna

1966-71 Assistant, Techn.Univ.Vienna

1968 Award of the ÖMG

1969 (Junior) Kardinal Innitzer Award

1970- Docent, Techn. Univ. Vienna

1971-76 Full Professor of Mathematics, Univ. Linz

1976- Full Professor of Mathematical Analysis, Techn. Univ. Vienna

1978-82 President, Austrian Math. Soc.

1981-87 Head, Division of Mathematics, Techn. Univ. Vienna

1985 Hon.Member, Accademia Nazionale di Scienze, Letter e Arti, Modena

1988 Corr. Member, Austrian Academy of Sciences

1991 Full Member, Austrian Academy of Sciences

2000 Hon. Doctorate, Univ. Turin

2001 Hon. Doctorate, Univ. Siegen

2001 Memorial Medal, Fac. Math and Physics, Charles Univ. Prague

2002 Korr. Member, Bayer. Akad. Wiss.

2003 Foreign Member, Russia Acad. Sciences

More than 100 articles and books in the geometry of numbers, convex and discrete geometry, and analysis. Extended visits to Budapest, Bologna, Toronto, Hobart (Tasmania), Chandigarh, Turin, Messina, Moscow-St.Petersburg, Warsaw, Sofia, Guanajuato, Peking, Tel Aviv-Jerusalem, Vancouver, Heraklion, Alicante.

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.