Covariant Canonical Gauge Gravity

· ·
· Springer Nature
電子書
207
評分和評論未經驗證  瞭解詳情

關於本電子書

This book starts with the mathematical basis of the theory - i.e. provide a brief sketch of the theory of manifolds and frame bundles, tensors and their transformations, relativistic kinematics, and aspects of non-flat space-time geometries. The definition of relevant physical quantities (torsion, curvature, non-metricity, tetrads, connection fields etc.) and important geometry concepts are also included. The main body of the book is devoted to a detailed derivation of the gauge theory of gravitation for scalar, vector (Proca and Maxwell) and Dirac spinor fields. Alternative approaches based on the Noether theorem and on the spinorial representation of the fields are also addressed, as well as important novel features related to the CCGG framework (Birkhoff theorem, field derivative identities etc.). In the last section of the volume the application of the CCGG theory to cosmology will be set out, resulting in a new understanding of dark energy and inflation.

關於作者

David Vasak studied theoretical nuclear physics and mathematics at the Goethe University in Frankfurt, Germany. His research work dealt with heavy-ion physics (diploma thesis) and with dynamics of quark matter (PhD thesis). Later, as guest scientist at the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt, Germany, and as research scientist at the Lawrence Berkeley Laboratory at Berkeley, California, USA, he developed the quantum version of the relativistic transport theory of fermions in external fields. After a career in technology and management consulting he returned to physics working now at the Frankfurt Institute for Advanced Studies (FIAS) in Frankfurt, Germany, on the novel gauge theory of gravity (CCGG) and its cosmological implications.

Jürgen Struckmeier studied physics at the Goethe University in Frankfurt, Germany. His research work dealt with charged particle optics (diploma thesis) and with space charge effects in intense charged particle beams (PhD thesis). Later, as staff scientist at the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt, Germany, he developed the covariant Hamiltonian version of classical field theories in his Habilitation thesis. The generalization of the Hamiltonian representation of field theories to a dynamics spacetime background then opened the door to work out a canonical transformation formulation of the gauge theory of gravity. In the year 2010, Dr. Struckmeier received the Professorship at the Physics faculty of the Goethe University Frankfurt. Prof. Struckmeier moved to the Frankfurt Institute for Advanced Studies (FIAS) in Frankfurt, Germany, where he has been a Fellow ever since. His research topics are broad, but recently he focused on diverse aspects of extensions of Einstein's general theory of relativity. His covariant canonical gauge theory of gravity (CCGG) are at the center of numerous physical implications of CCGG in astrophysics and cosmology.

Johannes Kirsch studied physics, mathematics and economics at the Goethe University in Frankfurt, Germany. He graduated with degrees in physics and business administration and earned his doctorate at the Institute for Theoretical Physics in Frankfurt under Walter Greiner. After a career in industry, where he was responsible for hardware and software development in the field of medical technology in a large German industrial company, he joined the Frankfurt Institute for Advanced Studies (FIAS) and is now working on a gauge theory of gravitation in the covariant canonical transformation framework (CCGG), which leads to an extension of Einstein's field equation. One focus of his research is its implications for cosmology.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。