Extensions of the Jacobi Identity for Vertex Operators, and Standard $A^{(1)}_1$-Modules

· American Mathematical Society: Memoirs of the American Mathematical Society Book 507 · American Mathematical Soc.
Ebook
85
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This work extends the Jacobi identity, the main axiom for a vertex operator algebra, to multi-operator identities. Based on constructions of Dong and Lepowsky, relative Z [2 -twisted vertex operators are then introduced, and a Jacobi identity for these operators is established. Husu uses these ideas to interpret and recover the twisted Z -operators and corresponding generating function identities developed by Lepowsky and Wilson for the construction of the standard A [1 ](1) -modules. The point of view of the Jacobi identity also shows the equivalence between these twisted Z-operator algebras and the (twisted) parafermion algebras constructed by Zamolodchikov and Fadeev. The Lepowsky-Wilson generating function identities correspond to the identities involved in the construction of a basis for the space of C-disorder fields of such parafermion algebras.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.