Cubical Homotopy Theory

·
· New Mathematical Monographs Book 25 · Cambridge University Press
eBook
649
Pages
Ratings and reviews aren’t verified  Learn more

About this eBook

Graduate students and researchers alike will benefit from this treatment of classical and modern topics in homotopy theory of topological spaces with an emphasis on cubical diagrams. The book contains 300 examples and provides detailed explanations of many fundamental results. Part I focuses on foundational material on homotopy theory, viewed through the lens of cubical diagrams: fibrations and cofibrations, homotopy pullbacks and pushouts, and the Blakers–Massey Theorem. Part II includes a brief example-driven introduction to categories, limits and colimits, an accessible account of homotopy limits and colimits of diagrams of spaces, and a treatment of cosimplicial spaces. The book finishes with applications to some exciting new topics that use cubical diagrams: an overview of two versions of calculus of functors and an account of recent developments in the study of the topology of spaces of knots.

About the author

Brian A. Munson is an Assistant Professor of Mathematics at the US Naval Academy. He has held postdoctoral and visiting positions at Stanford University, Harvard University, and Wellesley College, Massachusetts. His research area is algebraic topology, and his work spans topics such as embedding theory, knot theory, and homotopy theory.

Ismar Volić is an Associate Professor of Mathematics at Wellesley College, Massachusetts. He has held postdoctoral and visiting positions at the University of Virginia, Massachusetts Institute of Technology, and Louvain-la-Neuve University in Belgium. His research is in algebraic topology and his articles span a wide variety of subjects such as knot theory, homotopy theory, and category theory. He is an award-winning teacher whose research has been recognized by several grants from the National Science Foundation.

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.