Cubical Homotopy Theory

·
· New Mathematical Monographs Livre 25 · Cambridge University Press
E-book
649
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

Graduate students and researchers alike will benefit from this treatment of classical and modern topics in homotopy theory of topological spaces with an emphasis on cubical diagrams. The book contains 300 examples and provides detailed explanations of many fundamental results. Part I focuses on foundational material on homotopy theory, viewed through the lens of cubical diagrams: fibrations and cofibrations, homotopy pullbacks and pushouts, and the Blakers–Massey Theorem. Part II includes a brief example-driven introduction to categories, limits and colimits, an accessible account of homotopy limits and colimits of diagrams of spaces, and a treatment of cosimplicial spaces. The book finishes with applications to some exciting new topics that use cubical diagrams: an overview of two versions of calculus of functors and an account of recent developments in the study of the topology of spaces of knots.

À propos de l'auteur

Brian A. Munson is an Assistant Professor of Mathematics at the US Naval Academy. He has held postdoctoral and visiting positions at Stanford University, Harvard University, and Wellesley College, Massachusetts. His research area is algebraic topology, and his work spans topics such as embedding theory, knot theory, and homotopy theory.

Ismar Volić is an Associate Professor of Mathematics at Wellesley College, Massachusetts. He has held postdoctoral and visiting positions at the University of Virginia, Massachusetts Institute of Technology, and Louvain-la-Neuve University in Belgium. His research is in algebraic topology and his articles span a wide variety of subjects such as knot theory, homotopy theory, and category theory. He is an award-winning teacher whose research has been recognized by several grants from the National Science Foundation.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.