Cubical Homotopy Theory

·
· New Mathematical Monographs 第 25 冊 · Cambridge University Press
電子書
649
評分和評論未經驗證  瞭解詳情

關於本電子書

Graduate students and researchers alike will benefit from this treatment of classical and modern topics in homotopy theory of topological spaces with an emphasis on cubical diagrams. The book contains 300 examples and provides detailed explanations of many fundamental results. Part I focuses on foundational material on homotopy theory, viewed through the lens of cubical diagrams: fibrations and cofibrations, homotopy pullbacks and pushouts, and the Blakers–Massey Theorem. Part II includes a brief example-driven introduction to categories, limits and colimits, an accessible account of homotopy limits and colimits of diagrams of spaces, and a treatment of cosimplicial spaces. The book finishes with applications to some exciting new topics that use cubical diagrams: an overview of two versions of calculus of functors and an account of recent developments in the study of the topology of spaces of knots.

關於作者

Brian A. Munson is an Assistant Professor of Mathematics at the US Naval Academy. He has held postdoctoral and visiting positions at Stanford University, Harvard University, and Wellesley College, Massachusetts. His research area is algebraic topology, and his work spans topics such as embedding theory, knot theory, and homotopy theory.

Ismar Volić is an Associate Professor of Mathematics at Wellesley College, Massachusetts. He has held postdoctoral and visiting positions at the University of Virginia, Massachusetts Institute of Technology, and Louvain-la-Neuve University in Belgium. His research is in algebraic topology and his articles span a wide variety of subjects such as knot theory, homotopy theory, and category theory. He is an award-winning teacher whose research has been recognized by several grants from the National Science Foundation.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。