Curvature Measures of Singular Sets

· Springer
电子书
256
评分和评价未经验证  了解详情

关于此电子书

The book describes how curvature measures can be introduced for certain classes of sets with singularities in Euclidean spaces. Its focus lies on sets with positive reach and some extensions, which include the classical polyconvex sets and piecewise smooth submanifolds as special cases. The measures under consideration form a complete system of certain Euclidean invariants. Techniques of geometric measure theory, in particular, rectifiable currents are applied, and some important integral-geometric formulas are derived. Moreover, an approach to curvatures for a class of fractals is presented, which uses approximation by the rescaled curvature measures of small neighborhoods. The book collects results published during the last few decades in a nearly comprehensive way.

作者简介

Jan Rataj, born in 1962 in Prague, studied at Charles University in Prague and defended his PhD at the Mathematical Institute of the Czech Academy of Sciences in 1991. He has been affiliated to Charles University in Prague since 1992, as full professor since 2000. He is the author of approximately 55 publications (on probability theory, stochastic geometry, mathematical analysis, differential and integral geometry).

Martina Zähle, born in1950, obtained her Diploma in 1973 from Moscow State University. She received a PhD in 1978 and Habilitation in 1982 from the Friedrich Schiller University Jena where she has also held the Chair of Probability Theory in 1988, and Geometry in 1991. She has co-edited the proceedings of the international conference series ‘’Fractal Geometry and Stochastics I -V’’, published by Birkhäuser and is the author of more than 100 publications (on geometric integration theory, fractal geometry, stochastic geometry, potential analysis, fractional calculus and (s)pde).


为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。