Curvature in Mathematics and Physics

· Courier Corporation
E-knjiga
416
str.
Ocjene i recenzije nisu potvrđene  Saznajte više

O ovoj e-knjizi

This original text for courses in differential geometry is geared toward advanced undergraduate and graduate majors in math and physics. Based on an advanced class taught by a world-renowned mathematician for more than fifty years, the treatment introduces semi-Riemannian geometry and its principal physical application, Einstein's theory of general relativity, using the Cartan exterior calculus as a principal tool.
Starting with an introduction to the various curvatures associated to a hypersurface embedded in Euclidean space, the text advances to a brief review of the differential and integral calculus on manifolds. A discussion of the fundamental notions of linear connections and their curvatures follows, along with considerations of Levi-Civita's theorem, bi-invariant metrics on a Lie group, Cartan calculations, Gauss's lemma, and variational formulas. Additional topics include the Hopf-Rinow, Myer's, and Frobenius theorems; special and general relativity; connections on principal and associated bundles; the star operator; superconnections; semi-Riemannian submersions; and Petrov types. Prerequisites include linear algebra and advanced calculus, preferably in the language of differential forms.

O autoru

Shlomo Zvi Sternberg is a leading mathematician noted for his work in geometry. A longtime mathematics professor at Harvard University, he has written several textbooks for undergraduate students as well as a number of monographs used at Harvard and other educational institutions.

Ocijenite ovu e-knjigu

Recite nam što mislite.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play knjige za Android i iPad/iPhone. Automatski se sinkronizira s vašim računom i omogućuje vam da čitate online ili offline gdje god bili.
Prijenosna i stolna računala
Audioknjige kupljene na Google Playu možete slušati pomoću web-preglednika na računalu.
Elektronički čitači i ostali uređaji
Za čitanje na uređajima s elektroničkom tintom, kao što su Kobo e-čitači, trebate preuzeti datoteku i prenijeti je na svoj uređaj. Slijedite detaljne upute u centru za pomoć za prijenos datoteka na podržane e-čitače.