Cycles and Rays

· ·
· Nato Science Series C Βιβλίο 301 · Springer Science & Business Media
ebook
276
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

What is the "archetypal" image that comes to mind when one thinks of an infinite graph? What with a finite graph - when it is thought of as opposed to an infinite one? What structural elements are typical for either - by their presence or absence - yet provide a common ground for both? In planning the workshop on "Cycles and Rays" it had been intended from the outset to bring infinite graphs to the fore as much as possible. There never had been a graph theoretical meeting in which infinite graphs were more than "also rans", let alone one in which they were a central theme. In part, this is a matter of fashion, inasmuch as they are perceived as not readily lending themselves to applications, in part it is a matter of psychology stemming from the insecurity that many graph theorists feel in the face of set theory - on which infinite graph theory relies to a considerable extent. The result is that by and large, infinite graph theorists know what is happening in finite graphs but not conversely. Lack of knowledge about infinite graph theory can also be found in authoritative l sources. For example, a recent edition (1987) of a major mathematical encyclopaedia proposes to ". . . restrict [itself] to finite graphs, since only they give a typical theory". If anything, the reverse is true, and needless to say, the graph theoretical world knows better. One may wonder, however, by how much.

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.