Cytoskeleton Methods and Protocols

· Methods in molecular biology 第 161 冊 · Springer Science & Business Media
電子書
288
頁數
評分和評論未經驗證 瞭解詳情

關於這本電子書

Over the past two decades experimental studies have solidified the int- pretation of the cytoskeleton as a highly dynamic network of microtubules, actin microfilaments, intermediate filaments, and myosin filaments. Rather than a network of disparate fibers, these polymers are often interconnected and display synergy, which is the combined action of two or more cytoskeletal polymers to achieve a specific cellular structure or function. Cross-commu- cation among cytoskeletal polymers is thought to be achieved through cytoskeletal polymer accessory proteins and molecular motors that bind two or more cytoskeletal polymers. Development of the modern concept of the cytoskeleton is a direct o- growth of advances in experimental tools and reagents that are available to cell and molecular biologists. Technological advances and refinements in cell imaging have made it possible to selectively image a single cytoskeletal po- mer and monitor its dynamics through the use of fluorescence probes in vitro and in vivo. Two decades ago, cytoskeletal research was limited to a few perturbation reagents that included colchicine and cytochalasin. Today, the perturbation arsenal has expanded to a highly selective group of reagents that includes Taxol, nocodazole, benomyl, latrunculin, jasplakinolide, and such endogenous proteins as gelsolin. These reagents enable the investigator to selectively perturb or destroy a cytoskeletal polymer while leaving other cytoskeletal polymers intact. Site-specific monoclonal antibodies that target a specific cytoskeletal polymer have proven to be highly selective affinity tools for cytoskeletal research.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。