The Geometry of Cubic Hypersurfaces

· Cambridge Studies in Advanced Mathematics Book 206 · Cambridge University Press
Ebook
462
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Cubic hypersurfaces are described by almost the simplest possible polynomial equations, yet their behaviour is rich enough to demonstrate many of the central challenges in algebraic geometry. With exercises and detailed references to the wider literature, this thorough text introduces cubic hypersurfaces and all the techniques needed to study them. The book starts by laying the foundations for the study of cubic hypersurfaces and of many other algebraic varieties, covering cohomology and Hodge theory of hypersurfaces, moduli spaces of those and Fano varieties of linear subspaces contained in hypersurfaces. The next three chapters examine the general machinery applied to cubic hypersurfaces of dimension two, three, and four. Finally, the author looks at cubic hypersurfaces from a categorical point of view and describes motivic features. Based on the author's lecture courses, this is an ideal text for graduate students as well as an invaluable reference for researchers in algebraic geometry.

About the author

Daniel Huybrechts is Professor in the Mathematical Institute of the University of Bonn. He previously held positions at Université Denis Diderot Paris 7 and the University of Cologne. He has published five books, including 'Lectures on K3 Surfaces' (2016) and 'Fourier-Mukai Transforms in Algebraic Geometry' (2006).

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.