Data Management in Machine Learning Systems

· ·
· Springer Nature
Sách điện tử
157
Trang
Điểm xếp hạng và bài đánh giá chưa được xác minh  Tìm hiểu thêm

Giới thiệu về sách điện tử này

Large-scale data analytics using machine learning (ML) underpins many modern data-driven applications. ML systems provide means of specifying and executing these ML workloads in an efficient and scalable manner. Data management is at the heart of many ML systems due to data-driven application characteristics, data-centric workload characteristics, and system architectures inspired by classical data management techniques.

In this book, we follow this data-centric view of ML systems and aim to provide a comprehensive overview of data management in ML systems for the end-to-end data science or ML lifecycle. We review multiple interconnected lines of work: (1) ML support in database (DB) systems, (2) DB-inspired ML systems, and (3) ML lifecycle systems. Covered topics include: in-database analytics via query generation and user-defined functions, factorized and statistical-relational learning; optimizing compilers for ML workloads; execution strategies and hardware accelerators; data access methods such as compression, partitioning and indexing; resource elasticity and cloud markets; as well as systems for data preparation for ML, model selection, model management, model debugging, and model serving. Given the rapidly evolving field, we strive for a balance between an up-to-date survey of ML systems, an overview of the underlying concepts and techniques, as well as pointers to open research questions. Hence, this book might serve as a starting point for both systems researchers and developers.

Giới thiệu tác giả

Matthias Boehm is a professor at Graz University of Technology, Austria, where he holds a BMVIT-endowed chair for data management. Prior to joining TU Graz in 2018, he was a research staff member at IBM Research - Almaden, CA, USA, with a focus on compilation and runtime techniques for declarative, large-scale machine learning. He received his Ph.D.from Dresden University of Technology, Germany in 2011 with a dissertation on cost-based optimization of integration flows. His previous research also includes systems support for time series forecasting as well as in-memory indexing and query processing. Matthias is a recipient of the 2016 VLDB Best Paper Award, and a 2016 SIGMOD Research Highlight Award.Arun Kumar is an Assistant Professor at the University of California, San Diego. He received his Ph.D. from the University of Wisconsin-Madison in 2016. His research interests are in the intersection of data management, systems, and ML, with a focus on making ML-based data analytics easier, faster, cheaper, and more scalable. Ideas from his work have been adopted by many companies, including EMC, Oracle, Cloudera, Facebook, and Microsoft. He is a recipient of the Best Paper Award at SIGMOD 2014, the 2016 CS dissertation research award from UW-Madison, a 2016 Google Faculty Research Award, and a 2018 Hellman Fellowship.Jun Yang is a Professor of Computer Science at Duke University, where he has been teaching since receiving his Ph.D. from Stanford University in 2001. He is broadly interested in databases and data-intensive systems. He is a recipient of the NSF CAREER Award, IBM Faculty Award, HP Labs Innovation Research Award, and Google Faculty Research Award. He also received the David and Janet Vaughan Brooks Teaching Award at Duke. His current research interests lie in making data analysis easier and more scalable for scientists, statisticians, and journalists.

Xếp hạng sách điện tử này

Cho chúng tôi biết suy nghĩ của bạn.

Đọc thông tin

Điện thoại thông minh và máy tính bảng
Cài đặt ứng dụng Google Play Sách cho AndroidiPad/iPhone. Ứng dụng sẽ tự động đồng bộ hóa với tài khoản của bạn và cho phép bạn đọc trực tuyến hoặc ngoại tuyến dù cho bạn ở đâu.
Máy tính xách tay và máy tính
Bạn có thể nghe các sách nói đã mua trên Google Play thông qua trình duyệt web trên máy tính.
Thiết bị đọc sách điện tử và các thiết bị khác
Để đọc trên thiết bị e-ink như máy đọc sách điện tử Kobo, bạn sẽ cần tải tệp xuống và chuyển tệp đó sang thiết bị của mình. Hãy làm theo hướng dẫn chi tiết trong Trung tâm trợ giúp để chuyển tệp sang máy đọc sách điện tử được hỗ trợ.