Decidability and Boolean Representations

·
· American Mathematical Society: Memoirs of the American Mathematical Society หนังสือเล่มที่ 246 · American Mathematical Soc.
eBook
106
หน้า
คะแนนและรีวิวไม่ได้รับการตรวจสอบยืนยัน  ดูข้อมูลเพิ่มเติม

เกี่ยวกับ eBook เล่มนี้

In part I we address the question: which varieties have a decidable first order theory? We confine our attention to varieties whose algebras have modular congruence lattices (i.e., modular varieties), and focus primarily on locally finite varieties, although near the end of the paper Zamjatin's description of all decidable varieties of groups and rings, and offer a new proof of it. In part II, we show that if a variety admits such sheaf representations using only finitely many stalks, all of which are finite, then the variety can be decomposed in the product of a discriminator variety and an abelian variety. We continue this investigation by looking at well-known specializations of the sheaf construction, namely Boolean powers and sub-Boolean powers, giving special emphasis to quasi-primal algebras A, such that the sub-Boolean powers of A form a variety (this extends the work of Arens and Kaplansky on finite fields).

ให้คะแนน eBook นี้

แสดงความเห็นของคุณให้เรารับรู้

ข้อมูลในการอ่าน

สมาร์ทโฟนและแท็บเล็ต
ติดตั้งแอป Google Play Books สำหรับ Android และ iPad/iPhone แอปจะซิงค์โดยอัตโนมัติกับบัญชีของคุณ และช่วยให้คุณอ่านแบบออนไลน์หรือออฟไลน์ได้ทุกที่
แล็ปท็อปและคอมพิวเตอร์
คุณฟังหนังสือเสียงที่ซื้อจาก Google Play โดยใช้เว็บเบราว์เซอร์ในคอมพิวเตอร์ได้
eReader และอุปกรณ์อื่นๆ
หากต้องการอ่านบนอุปกรณ์ e-ink เช่น Kobo eReader คุณจะต้องดาวน์โหลดและโอนไฟล์ไปยังอุปกรณ์ของคุณ โปรดทำตามวิธีการอย่างละเอียดในศูนย์ช่วยเหลือเพื่อโอนไฟล์ไปยัง eReader ที่รองรับ