Decomposition of Jacobians by Prym Varieties

·
· Springer Nature
E-bog
251
Sider
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

This monograph studies decompositions of the Jacobian of a smooth projective curve, induced by the action of a finite group, into a product of abelian subvarieties. The authors give a general theorem on how to decompose the Jacobian which works in many cases and apply it for several groups, as for groups of small order and some series of groups. In many cases, these components are given by Prym varieties of pairs of subcovers. As a consequence, new proofs are obtained for the classical bigonal and trigonal constructions which have the advantage to generalize to more general situations. Several isogenies between Prym varieties also result.


Om forfatteren

Herbert Lange is a retired professor at the university of Erlangen-Nuremberg. His main research interests are abelian varieties and vector bundles on algebraic curves. He is the coauthor of several books, among them the Grundlehren volume "Complex Abelian Varieties" and for the series Progress in Mathematics, "Complex Tori".

RUBÍ E. RODRÍGUEZ is Professor of Mathematics at Universidad de La Frontera and Director of the Geometry at the Frontier Research Center. Her research interests include moduli spaces of curves and abelian varieties, with special attention to the action of groups and algebras.

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.