Deep Learning in Solar Astronomy

· ·
· Springer Nature
電子書
92
頁數
評分和評論未經驗證 瞭解詳情

關於這本電子書

The volume of data being collected in solar astronomy has exponentially increased over the past decade and we will be entering the age of petabyte solar data. Deep learning has been an invaluable tool exploited to efficiently extract key information from the massive solar observation data, to solve the tasks of data archiving/classification, object detection and recognition.

Astronomical study starts with imaging from recorded raw data, followed by image processing, such as image reconstruction, inpainting and generation, to enhance imaging quality. We study deep learning for solar image processing. First, image deconvolution is investigated for synthesis aperture imaging. Second, image inpainting is explored to repair over-saturated solar image due to light intensity beyond threshold of optical lens. Third, image translation among UV/EUV observation of the chromosphere/corona, Ha observation of the chromosphere and magnetogram of the photosphere is realized by using GAN, exhibiting powerful image domain transfer ability among multiple wavebands and different observation devices. It can compensate the lack of observation time or waveband. In addition, time series model, e.g., LSTM, is exploited to forecast solar burst and solar activity indices.

This book presents a comprehensive overview of the deep learning applications in solar astronomy. It is suitable for the students and young researchers who are major in astronomy and computer science, especially interdisciplinary research of them.

關於作者

Prof. Long Xu received his Ph.D. degree from the Institute of Computing Technology, Chinese Academy of Sciences (CAS) in 2009. He was selected into the 100-Talents Plan of CAS in 2014. From 2014 to 2022, he was with the National Astronomical Observatories, CAS. He is currently with both National Space Science Center, CAS and Peng Cheng Laboratory. His research interests include image/video processing, solar radio astronomy, wavelet, machine learning, and computer vision. He has published more than 100 academic papers, and a book “Visual quality assessment by machine learning” with Springer in 2015.

Prof. Yihua Yan received his Ph.D. degree from the Dalian University of Technology in 1990. He was a Foreign Research Fellow with the NAOJ (Japan) from 1995 to 1996, and an Alexander von Humboldt Fellow with the Astronomical Institute, Wurzburg University, Germany, from 1996 to 1997. He was the President of IAU Division E: Sun and Heliosphere from 2015 to 2018. He was the Director of the CAS Key Laboratory of Solar Activity (2008-2019), and the Director of Solar Physics Division (2013-2021), at NAOC. He is currently a Professor and a Chief Scientist, National Space Science Center, Chinese Academy of Sciences.

Dr. Xin Huang received the Ph.D. degree from Harbin Institute of Technology in 2010. He was an associate professor at Solar Activity Prediction Center, NAOC from 2013. Now, he is with the Space Environment Prediction Center, National Space Science Center, Chinese Academy of Sciences. His research interests include data mining, image processing and short-term solar activity forecasting. He has published more than 20 academic papers, including one of the top 1% most cited papers in IOP Publishing’s astrophysics journals, published over the period of 2018-2020.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。