Degeneracy Graphs and the Neighbourhood Problem

· Lecture Notes in Economics and Mathematical Systems 260. grāmata · Springer Science & Business Media
E-grāmata
132
Lappuses
Atsauksmes un vērtējumi nav pārbaudīti. Uzzināt vairāk

Par šo e-grāmatu

A few years ago nobody would have anticipated that in connection with degeneracy in Linear Programming quite a new field. could originate. In 1976 a very simple question has been posed: in the case an extreme pOint (EP) of a polytope is degenerate and the task is to find all neighbouring EP's of the degenerate EP, is it necessary to determine all basic solutions of the corresponding equalities system associated with the degenerate EP -in order to be certain to determine all neighbours of this EP? This question implied another one: Does there exists a subset of the mentioned set of basic solutions such that it suffices to find such a subset in order to determine all neighbours? The first step to solve these questions (which are motivated in the first Chapter of this book) was to define a graph (called degeneracy graph) the nodes of which correspond to the basic solutions. It turned out that such a graph has some special properties and in order to solve the above questions firstly these properties had to be investigated. Also the structure of degeneracy graphs playes hereby an important role. Because the theory of degeneracy graphs was quite new, it was necessary to elaborate first a completely new terminology and to define new notions. Dr.

Novērtējiet šo e-grāmatu

Izsakiet savu viedokli!

Informācija lasīšanai

Viedtālruņi un planšetdatori
Instalējiet lietotni Google Play grāmatas Android ierīcēm un iPad planšetdatoriem/iPhone tālruņiem. Lietotne tiks automātiski sinhronizēta ar jūsu kontu un ļaus lasīt saturu tiešsaistē vai bezsaistē neatkarīgi no jūsu atrašanās vietas.
Klēpjdatori un galddatori
Varat klausīties pakalpojumā Google Play iegādātās audiogrāmatas, izmantojot datora tīmekļa pārlūkprogrammu.
E-lasītāji un citas ierīces
Lai lasītu grāmatas tādās elektroniskās tintes ierīcēs kā Kobo e-lasītāji, nepieciešams lejupielādēt failu un pārsūtīt to uz savu ierīci. Izpildiet palīdzības centrā sniegtos detalizētos norādījumus, lai pārsūtītu failus uz atbalstītiem e-lasītājiem.