Die Einheitengruppe im Restklassering Z_n

· GRIN Verlag
5,0
1 review
E-boek
26
Pagina's
Geschikt
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

Studienarbeit aus dem Jahr 2000 im Fachbereich Mathematik - Algebra, Note: 1,3, Rheinisch-Westfälische Technische Hochschule Aachen (Lehrstuhl D für Mathematik), Veranstaltung: Vorlesung Algebra I, Sprache: Deutsch, Abstract: Ein Ring-mit-1 besteht aus einer Menge R von Elementen zusammen mit zwei Verknüpfungen + und *, die je zwei Elementen x, y aus R wieder ein Element x + y bzw. x * y von R zuordnen. Damit eine solche Struktur Ring genannt wird, müssen die folgenden drei Gruppen von Gesetzen für alle Elemente x, y, z ` R erfüllt sein: 1. Gesetze der Addition • Assoziativität: (x + y) + z = x + (y + z) • Existenz und Eindeutigkeit des neutralen Elementes: Es gibt genau ein Element 0 von R, für das gilt: 0 + x = x • Existenz und Eindeutigkeit inverser Elemente: Zu jedem Element x aus R gibt es genau ein Element -x aus R, für das gilt: x + (-x) = 0 • Kommutativität: x + y = y + x 2. Gesetze der Multiplikation • Assoziativität: x * (y * z) = (x * y) * z • Existenz und Eindeutigkeit des neutralen Elementes: Es gibt genau ein Element 1 von R, für das gilt: 1 * x = x = x * 1

Beoordelingen en reviews

5,0
1 review

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.