Differential Geometry: Bundles, Connections, Metrics and Curvature

· Oxford Graduate Texts in Mathematics Книга 23 · OUP Oxford
Электронная книга
304
Количество страниц
Можно добавить
Оценки и отзывы не проверены. Подробнее…

Об электронной книге

Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the definition of characteristic classes, and also an introduction to complex and Kähler geometry. Differential Geometry uses many of the classical examples from, and applications of, the subjects it covers, in particular those where closed form expressions are available, to bring abstract ideas to life. Helpfully, proofs are offered for almost all assertions throughout. All of the introductory material is presented in full and this is the only such source with the classical examples presented in detail.

Об авторе

Clifford Henry Taubes is the William Petschek Professor of Mathematics at Harvard University. He is a member of the National Academy of Sciences and also the American Academy of Sciences. He was awarded the American Mathematical Society's Oswald Veblen Prize in 1991 for his work in differential geometry and topology. He was also the recipient of the French Academy of Sciences Elie Cartan Prize in 1993, the Clay Research Award in 2008, the National Academy of Sciences' Mathematics Award in 2008, and the Shaw Prize in Mathematics in 2009.

Оцените электронную книгу

Поделитесь с нами своим мнением.

Где читать книги

Смартфоны и планшеты
Установите приложение Google Play Книги для Android или iPad/iPhone. Оно синхронизируется с вашим аккаунтом автоматически, и вы сможете читать любимые книги онлайн и офлайн где угодно.
Ноутбуки и настольные компьютеры
Слушайте аудиокниги из Google Play в веб-браузере на компьютере.
Устройства для чтения книг
Чтобы открыть книгу на таком устройстве для чтения, как Kobo, скачайте файл и добавьте его на устройство. Подробные инструкции можно найти в Справочном центре.