Differential Manifolds

· Pure and Applied Mathematics 138-кітап · Academic Press
Электрондық кітап
248
бет
Жарамды
Рейтингілер мен пікірлер тексерілмеген. Толығырақ

Осы электрондық кітап туралы ақпарат

Differential Manifolds is a modern graduate-level introduction to the important field of differential topology. The concepts of differential topology lie at the heart of many mathematical disciplines such as differential geometry and the theory of lie groups. The book introduces both the h-cobordism theorem and the classification of differential structures on spheres. The presentation of a number of topics in a clear and simple fashion make this book an outstanding choice for a graduate course in differential topology as well as for individual study. - Presents the study and classification of smooth structures on manifolds - It begins with the elements of theory and concludes with an introduction to the method of surgery - Chapters 1-5 contain a detailed presentation of the foundations of differential topology--no knowledge of algebraic topology is required for this self-contained section - Chapters 6-8 begin by explaining the joining of manifolds along submanifolds, and ends with the proof of the h-cobordism theory - Chapter 9 presents the Pontriagrin construction, the principle link between differential topology and homotopy theory; The final chapter introduces the method of surgery and applies it to the classification of smooth structures on spheres

Осы электрондық кітапты бағалаңыз.

Пікіріңізбен бөлісіңіз.

Ақпаратты оқу

Смартфондар мен планшеттер
Android және iPad/iPhone үшін Google Play Books қолданбасын орнатыңыз. Ол аккаунтпен автоматты түрде синхрондалады және қайда болсаңыз да, онлайн не офлайн режимде оқуға мүмкіндік береді.
Ноутбуктар мен компьютерлер
Google Play дүкенінде сатып алған аудиокітаптарды компьютердің браузерінде тыңдауыңызға болады.
eReader және басқа құрылғылар
Kobo eReader сияқты E-ink технологиясымен жұмыс істейтін құрылғылардан оқу үшін файлды жүктеп, оны құрылғыға жіберу керек. Қолдау көрсетілетін eReader құрылғысына файл жіберу үшін Анықтама орталығының нұсқауларын орындаңыз.