Differential- und Integralrechnung III: Integrationstheorie · Kurven- und Flächenintegrale

·
· Heidelberger Taschenbücher 43권 · Springer-Verlag
eBook
190
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Der dritte und letzte Teil unserer Darstellung der Differential und Integralrechnung ist der Integrationstheorie im. Rn gewidmet. Er ist gedacht für Mathematik- und Physikstudenten des dritten und vierten Semesters. Zum Verständnis wird der Stoff von Band I und ein kleiner Teil des Stoffes von Band II vorausgesetzt. 1. Wir beginnen (in Kap. I) mit dem Lebesgueschen Integral im Rn. Anstelle des sehr speziellen euklidischen Maßes legen wir sogleich allgemeine Radonsche Maße zugrunde und beziehen auf diese Weise das Lebesgue-Stieltjes-Integral und die Integration über das Dirac sche b-Maß in unsere Theorie ein. Um den Umweg über das Rie mannsche Integral zu vermeiden, führen wir Radonsche Maße als (stetige) Linearformen auf einem Vektorraum von Treppenfunk tionen ein, also nicht, wie sonst üblich, auf dem Raum der stetigen Funktionen mit kompaktem Träger. Natürlich gelangt man auch hierdurch zum üblichen Integralbegriff. in § 2 ist wieder so gefaßt, daß sie Die Definition des Integrals sich unverändert auf allgemeinste Fälle überträgt, z. B. auf Funk tionen mit Werten in einem topologischen Vektorraum V. Selbst verständlich muß V ein lokal-konvexer Hausdorff-Raum sein, wenn man sinnvolle Ergebnisse erwarten will. Iq diesem Fall werden Funk tionsbereiche folgendermaßen erklärt: Es sei W c Rn X V eine offene Menge, so daß für jeden Punkt ~ERn der Durchschnitt ({d X V) n W nichtleer und konvex ist; ferner gebe es eine kompakte Menge KclR,11 mit (Rn - K) X {O} c W.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.