Differential- und Integralrechnung II: Differentialrechnung in mehreren Veränderlichen Differentialgleichungen

·
· Heidelberger Taschenbücher Kirja 36 · Springer-Verlag
E-kirja
228
sivuja
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

Der nun vorliegende zweite Teil der dreibändigen Darstellung der Differential- und Integralredmung ist der Differentialredlnung der Funktionen mehrerer reellen Veränderlichen und den gewöhnlidlen Differentialgleidlungen gewidmet. Er ist gedadlt etwa für Studenten im zweiten bis dritten Semester - dementsprechend wird vom Leser nur die Kenntnis des wesentlidlen Teils des Stoffs von Band I und dar über hinaus Bekanntschaft mit dem Begriff des Vektorraums erwartet. Die Autoren haben sidl wieder um einen strengen und systemati sdlen Aufbau der Theorie bemüht. Dabei waren sie bestrebt, unnötige Abstraktionen und Verallgemeinerungen zu vermeiden, sie haben jedodl gleidlzeitig versudlt, Definitionen und Methoden so zu bringen, daß sie sidl möglidlst unmittelbar auf allgemeinste Fälle übertragen lassen. Beispielsweise besagt die Definition der (totalen) Differenzierbarkeit (in anderen Worten): Eine reelle Funktion f, die in einer offenen Umgebung U eines Punktes X in einem Zahlenraum lRn erklärt ist, heißt in X o o differenzierbar, wenn es eine in X stetige Abbildung x -+ L1" von U in o n den dualen Raum Horn (lR , lR) gibt, so daß f(x) =f(x ) +L1" (x-x ) o o gilt. Diese Definition überträgt sidl auf den Fall, wo X Punkt eines o separierten topologisdlen Vektorraumes E ist und die Werte von f in einem ebensoldlen Vektorraum Fliegen.

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.