Differential- und Integralrechnung II: Differentialrechnung in mehreren Veränderlichen Differentialgleichungen

·
· Heidelberger Taschenbücher Buku 36 · Springer-Verlag
eBook
228
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

Der nun vorliegende zweite Teil der dreibändigen Darstellung der Differential- und Integralredmung ist der Differentialredlnung der Funktionen mehrerer reellen Veränderlichen und den gewöhnlidlen Differentialgleidlungen gewidmet. Er ist gedadlt etwa für Studenten im zweiten bis dritten Semester - dementsprechend wird vom Leser nur die Kenntnis des wesentlidlen Teils des Stoffs von Band I und dar über hinaus Bekanntschaft mit dem Begriff des Vektorraums erwartet. Die Autoren haben sidl wieder um einen strengen und systemati sdlen Aufbau der Theorie bemüht. Dabei waren sie bestrebt, unnötige Abstraktionen und Verallgemeinerungen zu vermeiden, sie haben jedodl gleidlzeitig versudlt, Definitionen und Methoden so zu bringen, daß sie sidl möglidlst unmittelbar auf allgemeinste Fälle übertragen lassen. Beispielsweise besagt die Definition der (totalen) Differenzierbarkeit (in anderen Worten): Eine reelle Funktion f, die in einer offenen Umgebung U eines Punktes X in einem Zahlenraum lRn erklärt ist, heißt in X o o differenzierbar, wenn es eine in X stetige Abbildung x -+ L1" von U in o n den dualen Raum Horn (lR , lR) gibt, so daß f(x) =f(x ) +L1" (x-x ) o o gilt. Diese Definition überträgt sidl auf den Fall, wo X Punkt eines o separierten topologisdlen Vektorraumes E ist und die Werte von f in einem ebensoldlen Vektorraum Fliegen.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.