Differential- und Integralrechnung II: Differentialrechnung in mehreren Veränderlichen Differentialgleichungen

·
· Heidelberger Taschenbücher Buku 36 · Springer-Verlag
e-Buku
228
Halaman
Rating dan ulasan tidak disahkan  Ketahui Lebih Lanjut

Perihal e-buku ini

Der nun vorliegende zweite Teil der dreibändigen Darstellung der Differential- und Integralredmung ist der Differentialredlnung der Funktionen mehrerer reellen Veränderlichen und den gewöhnlidlen Differentialgleidlungen gewidmet. Er ist gedadlt etwa für Studenten im zweiten bis dritten Semester - dementsprechend wird vom Leser nur die Kenntnis des wesentlidlen Teils des Stoffs von Band I und dar über hinaus Bekanntschaft mit dem Begriff des Vektorraums erwartet. Die Autoren haben sidl wieder um einen strengen und systemati sdlen Aufbau der Theorie bemüht. Dabei waren sie bestrebt, unnötige Abstraktionen und Verallgemeinerungen zu vermeiden, sie haben jedodl gleidlzeitig versudlt, Definitionen und Methoden so zu bringen, daß sie sidl möglidlst unmittelbar auf allgemeinste Fälle übertragen lassen. Beispielsweise besagt die Definition der (totalen) Differenzierbarkeit (in anderen Worten): Eine reelle Funktion f, die in einer offenen Umgebung U eines Punktes X in einem Zahlenraum lRn erklärt ist, heißt in X o o differenzierbar, wenn es eine in X stetige Abbildung x -+ L1" von U in o n den dualen Raum Horn (lR , lR) gibt, so daß f(x) =f(x ) +L1" (x-x ) o o gilt. Diese Definition überträgt sidl auf den Fall, wo X Punkt eines o separierten topologisdlen Vektorraumes E ist und die Werte von f in einem ebensoldlen Vektorraum Fliegen.

Berikan rating untuk e-Buku ini

Beritahu kami pendapat anda.

Maklumat pembacaan

Telefon pintar dan tablet
Pasang apl Google Play Books untuk Android dan iPad/iPhone. Apl ini menyegerak secara automatik dengan akaun anda dan membenarkan anda membaca di dalam atau luar talian, walau di mana jua anda berada.
Komputer riba dan komputer
Anda boleh mendengar buku audio yang dibeli di Google Play menggunakan penyemak imbas web komputer anda.
eReader dan peranti lain
Untuk membaca pada peranti e-dakwat seperti Kobo eReaders, anda perlu memuat turun fail dan memindahkan fail itu ke peranti anda. Sila ikut arahan Pusat Bantuan yang terperinci untuk memindahkan fail ke e-Pembaca yang disokong.