Dimension Groups and Dynamical Systems: Substitutions, Bratteli Diagrams and Cantor Systems

·
· Cambridge Studies in Advanced Mathematics Книга 196 · Cambridge University Press
Электронная книга
594
Количество страниц
Оценки и отзывы не проверены. Подробнее…

Об электронной книге

This book is the first self-contained exposition of the fascinating link between dynamical systems and dimension groups. The authors explore the rich interplay between topological properties of dynamical systems and the algebraic structures associated with them, with an emphasis on symbolic systems, particularly substitution systems. It is recommended for anybody with an interest in topological and symbolic dynamics, automata theory or combinatorics on words. Intended to serve as an introduction for graduate students and other newcomers to the field as well as a reference for established researchers, the book includes a thorough account of the background notions as well as detailed exposition – with full proofs – of the major results of the subject. A wealth of examples and exercises, with solutions, serve to build intuition, while the many open problems collected at the end provide jumping-off points for future research.

Об авторе

Fabien Durand is Full Professor in Mathematics at Université de Picardie Jules Verne. His interests include topological dynamical systems and the relations with theoretical computer science. He is currently the president of the Société Mathématique de France.

Dominique Perrin is Emeritus Professor in Mathematics and Computer Science at Université Gustave Eiffel. He is (co)author or editor of a number of books including Profinite Semigroups and Symbolic Dynamics, Codes and Automata, Infinite Words and Combinatorics on Words (under the pseudonym Lothaire). He is a member of Academia Europea.

Оцените электронную книгу

Поделитесь с нами своим мнением.

Где читать книги

Смартфоны и планшеты
Установите приложение Google Play Книги для Android или iPad/iPhone. Оно синхронизируется с вашим аккаунтом автоматически, и вы сможете читать любимые книги онлайн и офлайн где угодно.
Ноутбуки и настольные компьютеры
Слушайте аудиокниги из Google Play в веб-браузере на компьютере.
Устройства для чтения книг
Чтобы открыть книгу на таком устройстве для чтения, как Kobo, скачайте файл и добавьте его на устройство. Подробные инструкции можно найти в Справочном центре.