Dimensionality Reduction: Advancements in data processing for intelligent systems

· Robotics Science Libri 26 · One Billion Knowledgeable
Libër elektronik
354
Faqe
I përshtatshëm
Vlerësimet dhe komentet nuk janë të verifikuara  Mëso më shumë

Rreth këtij libri elektronik

1: Dimensionality reduction: Introduces the concept and need for reducing the complexity of highdimensional data in robotics.

2: Principal component analysis: Discusses PCA as a key linear technique for feature extraction and data compression.


3: Nonlinear dimensionality reduction: Explores nonlinear techniques for capturing complex data structures in robotics.


4: Eigenface: Covers the use of eigenfaces for facial recognition in robotics, demonstrating a realworld application of dimensionality reduction.


5: Empirical orthogonal functions: Describes a method for representing data in a way that captures important features for robotic systems.


6: Semidefinite embedding: Introduces this technique to preserve data relationships while reducing dimensionality, improving robotic data processing.


7: Linear discriminant analysis: Explains how LDA helps in classification tasks by focusing on class separability in reduced data.


8: Nonnegative matrix factorization: Describes how NMF helps in extracting partsbased representations from data, particularly for robotics.


9: Kernel principal component analysis: Expands on PCA with kernel methods to handle nonlinear data, crucial for robotics systems working with complex inputs.


10: Shogun (toolbox): Highlights the Shogun machine learning toolbox, which includes dimensionality reduction methods for robotic applications.


11: Spectral clustering: Covers this technique for clustering highdimensional data, an essential task in robotic perception and understanding.


12: Isomap: Discusses Isomap, a method for nonlinear dimensionality reduction, and its impact on improving robotic models.


13: Principal component regression: Links PCA with regression to reduce data dimensionality and improve predictive models in robotics.


14: Multilinear subspace learning: Introduces this advanced method for handling multidimensional data, boosting robot performance.


15: Mlpy: Details the Mlpy machine learning library, showcasing tools for dimensionality reduction in robotic systems.


16: Diffusion map: Focuses on the diffusion map technique for dimensionality reduction and its application to robotics.


17: Feature learning: Explores the concept of feature learning and its significance in enhancing robotic systems’ data interpretation.


18: Kernel adaptive filter: Discusses this filtering technique for adapting models to dynamic data, improving realtime robotic decisionmaking.


19: Random projection: Offers insights into how random projection techniques can speed up dimensionality reduction for large data sets in robotics.


20: Feature engineering: Introduces the process of designing features that help robots understand and interact with their environments more effectively.


21: Multivariate normal distribution: Concludes with an exploration of this statistical tool used in robotics for handling uncertainty and data modeling.

Vlerëso këtë libër elektronik

Na trego se çfarë mendon.

Informacione për leximin

Telefona inteligjentë dhe tabletë
Instalo aplikacionin "Librat e Google Play" për Android dhe iPad/iPhone. Ai sinkronizohet automatikisht me llogarinë tënde dhe të lejon të lexosh online dhe offline kudo që të ndodhesh.
Laptopë dhe kompjuterë
Mund të dëgjosh librat me audio të blerë në Google Play duke përdorur shfletuesin e uebit të kompjuterit.
Lexuesit elektronikë dhe pajisjet e tjera
Për të lexuar në pajisjet me bojë elektronike si p.sh. lexuesit e librave elektronikë Kobo, do të të duhet të shkarkosh një skedar dhe ta transferosh atë te pajisja jote. Ndiq udhëzimet e detajuara në Qendrën e ndihmës për të transferuar skedarët te lexuesit e mbështetur të librave elektronikë.

Vazhdo serinë

Më shumë nga Fouad Sabry

Libra elektronikë të ngjashëm