2. The Algorithm ... ... 59 3. Convergence Analysis ... . ... 60 4. Complexity Analysis ... ... 63 5. Conclusions ... ... 67 References ... ... 67 A Simple Proof for a Result of Ollerenshaw on Steiner Trees ... 68 Xiufeng Du, Ding-Zhu Du, Biao Gao, and Lixue Qii 1. Introduction ... ... 68 2. In the Euclidean Plane ... ... 69 3. In the Rectilinear Plane ... ... 70 4. Discussion ...-. ... ... 71 References ... ... 71 Optimization Algorithms for the Satisfiability (SAT) Problem ... 72 Jun Gu 1. Introduction ... ... 72 2. A Classification of SAT Algorithms ... 7:3 3. Preliminaries ... ... IV 4. Complete Algorithms and Incomplete Algorithms ... . 81 5. Optimization: An Iterative Refinement Process ... 86 6. Local Search Algorithms for SAT ... 89 7. Global Optimization Algorithms for SAT Problem ... 106 8. Applications ... ... 137 9. Future Work ... ... 140 10. Conclusions ... ... 141 References ... ... 143 Ergodic Convergence in Proximal Point Algorithms with Bregman Functions ... . 155 Osman Guier 1. Introduction ... : ... ... 155 2. Convergence for Function Minimization ... 158 3. Convergence for Arbitrary Maximal Monotone Operators ... 161 References ... ... 163 Adding and Deleting Constraints in the Logarithmic Barrier Method for LP ... 166 D. den Hertog, C. Roos, and T. Terlaky 1. Introduction ... ... 16(5 2. The Logarithmic Darrier Method ... lG8 CONTENTS IX 3. The Effects of Shifting, Adding and Deleting Constraints ... 171 4. The Build-Up and Down Algorithm ... 177 ... 5. Complexity Analysis ... ... 180 References ... ... 184 A Projection Method for Solving Infinite Systems of Linear Inequalities ... ... 186 Hui Hu 1. Introduction ... ... 186 2. The Projection Method ... ... 186 3. Convergence Rate ... ... 189 4. Infinite Systems of Convex Inequalities ... 191 5. Application ... ... 193 References ... ...