Discrete Mathematics

· Waveland Press
3,6
9 resensies
E-boek
671
Bladsye
Geskik
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

Chartrand and Zhangs Discrete Mathematics presents a clearly written, student-friendly introduction to discrete mathematics. The authors draw from their background as researchers and educators to offer lucid discussions and descriptions fundamental to the subject of discrete mathematics. Unique among discrete mathematics textbooks for its treatment of proof techniques and graph theory, topics discussed also include logic, relations and functions (especially equivalence relations and bijective functions), algorithms and analysis of algorithms, introduction to number theory, combinatorics (counting, the Pascal triangle, and the binomial theorem), discrete probability, partially ordered sets, lattices and Boolean algebras, cryptography, and finite-state machines.

This highly versatile text provides mathematical background used in a wide variety of disciplines, including mathematics and mathematics education, computer science, biology, chemistry, engineering, communications, and business.

 
Some of the major features and strengths of this textbook

  • Numerous, carefully explained examples and applications facilitate learning.

  • More than 1,600 exercises, ranging from elementary to challenging, are included with hints/answers to all odd-numbered exercises.

  • Descriptions of proof techniques are accessible and lively.

  • Students benefit from the historical discussions throughout the textbook.

Graderings en resensies

3,6
9 resensies

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.