Discrete Mathematics

· Waveland Press
3,6
9 recensioni
Ebook
671
pagine
Idoneo
Valutazioni e recensioni non sono verificate  Scopri di più

Informazioni su questo ebook

Chartrand and Zhangs Discrete Mathematics presents a clearly written, student-friendly introduction to discrete mathematics. The authors draw from their background as researchers and educators to offer lucid discussions and descriptions fundamental to the subject of discrete mathematics. Unique among discrete mathematics textbooks for its treatment of proof techniques and graph theory, topics discussed also include logic, relations and functions (especially equivalence relations and bijective functions), algorithms and analysis of algorithms, introduction to number theory, combinatorics (counting, the Pascal triangle, and the binomial theorem), discrete probability, partially ordered sets, lattices and Boolean algebras, cryptography, and finite-state machines.

This highly versatile text provides mathematical background used in a wide variety of disciplines, including mathematics and mathematics education, computer science, biology, chemistry, engineering, communications, and business.

 
Some of the major features and strengths of this textbook

  • Numerous, carefully explained examples and applications facilitate learning.

  • More than 1,600 exercises, ranging from elementary to challenging, are included with hints/answers to all odd-numbered exercises.

  • Descriptions of proof techniques are accessible and lively.

  • Students benefit from the historical discussions throughout the textbook.

Valutazioni e recensioni

3,6
9 recensioni

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.