Discrete Mathematics

· Waveland Press
3,6
9 anmeldelser
E-bok
671
Sider
Kvalifisert
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

Chartrand and Zhangs Discrete Mathematics presents a clearly written, student-friendly introduction to discrete mathematics. The authors draw from their background as researchers and educators to offer lucid discussions and descriptions fundamental to the subject of discrete mathematics. Unique among discrete mathematics textbooks for its treatment of proof techniques and graph theory, topics discussed also include logic, relations and functions (especially equivalence relations and bijective functions), algorithms and analysis of algorithms, introduction to number theory, combinatorics (counting, the Pascal triangle, and the binomial theorem), discrete probability, partially ordered sets, lattices and Boolean algebras, cryptography, and finite-state machines.

This highly versatile text provides mathematical background used in a wide variety of disciplines, including mathematics and mathematics education, computer science, biology, chemistry, engineering, communications, and business.

 
Some of the major features and strengths of this textbook

  • Numerous, carefully explained examples and applications facilitate learning.

  • More than 1,600 exercises, ranging from elementary to challenging, are included with hints/answers to all odd-numbered exercises.

  • Descriptions of proof techniques are accessible and lively.

  • Students benefit from the historical discussions throughout the textbook.

Vurderinger og anmeldelser

3,6
9 anmeldelser

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.