Diskrete Mathematik: Ausgabe 3

· Springer-Verlag
eBook
316
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

Vor 50 Jahren gab es den Begriff "Diskrete Mathematik" nicht, und er ist auch heute im deutschen Sprachraum keineswegs gebräuchlich. Vorlesungen dazu werden nicht überall und schon gar nicht mit einem einheitlichen Themenkatalog angeboten (im Gegensatz zum Beispiel zu den USA, wo sie seit langem einen festen Platz haben). Die Mathematiker verstehen unter Diskreter Mathematik meist Kombinatorik oder Graphentheorie, die Informatiker Diskrete Strukturen oder Boolesche Algebren. Das Hauptanliegen dieses Buches ist daher, solch einen Themenkatalog zu präsentieren, der alle Grundlagen für ein weiterführendes Studium enthält. Die Diskrete Mathematik beschäftigt sich vor allem mit endlichen Mengen. Was kann man in endlichen Mengen studieren? Als allererstes kann man sie abzählen, dies ist das klassische Thema der Kombinatorik - in Teil I werden wir die wich tigsten Ideen und Methoden zur Abzählung kennenlernen. Auf endlichen Mengen ist je nach Aufgabenstellung meist eine einfache Struktur in Form von Relationen gegeben, von denen die anwendungsreichsten die Graphen sind. Diese Aspekte fas sen wir in Teil II unter dem Titel Graphen und Algorithmen zusammen. Und schließlich existiert auf endlichen Mengen oft eine algebraische Struktur (oder man kann eine solche auf natürliche Weise erklären). Algebraische Systeme sind der Inhalt von Teil III. Diese drei Gesichtspunkte bilden den roten Faden des Buches. Ein weiterer Aspekt, der die Darstellung durchgehend prägt, betrifft den Begriff der Optimierung.

Acerca del autor

Prof. Dr. Martin Aigner ist an der FU Berlin tätig.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.