Let $\bf\Gamma$ be a Borel class, or a Wadge class of Borel sets, and $2\!\leq\! d\!\leq\!\omega$ be a cardinal. A Borel subset $B$ of ${\mathbb R}^d$ is potentially in $\bf\Gamma$ if there is a finer Polish topology on $\mathbb R$ such that $B$ is in $\b