Dynamical Systems and Population Persistence

· American Mathematical Soc.
Е-књига
405
Страница
Оцене и рецензије нису верификоване  Сазнајте више

О овој е-књизи

"The mathematical theory of persistence answers questions such as which species, in a mathematical model of interacting species, will survive over the long term. It applies to infinite-dimensional as well as to finite-dimensional dynamical systems, and to discrete-time as well as to continuous-time semiflows. This monograph provides a self-contained treatment of persistence theory that is accessible to graduate students. The key results for deterministic autonomous systems are proved in full detail such as the acyclicity theorem and the tripartition of a global compact attractor. Suitable conditions are given for persistence to imply strong persistence even for nonautonomous semiflows, and time-heterogeneous persistence results are developed using so-called 'average Lyapunov functions'. Applications play a large role in the monograph from the beginning. These include ODE models such as an SEIRS infectious disease in a meta-population and discrete-time nonlinear matrix models of demographic dynamics. Entire chapters are devoted to infinite-dimensional examples including an SI epidemic model with variable infectivity, microbial growth in a tubular bioreactor, and an age-structured model of cells growing in a chemostat."--Publisher's description.

Оцените ову е-књигу

Јавите нам своје мишљење.

Информације о читању

Паметни телефони и таблети
Инсталирајте апликацију Google Play књиге за Android и iPad/iPhone. Аутоматски се синхронизује са налогом и омогућава вам да читате онлајн и офлајн где год да се налазите.
Лаптопови и рачунари
Можете да слушате аудио-књиге купљене на Google Play-у помоћу веб-прегледача на рачунару.
Е-читачи и други уређаји
Да бисте читали на уређајима које користе е-мастило, као што су Kobo е-читачи, треба да преузмете фајл и пренесете га на уређај. Пратите детаљна упутства из центра за помоћ да бисте пренели фајлове у подржане е-читаче.