A comprehensive survey of the use of the Liouville (and super-Liouville) equation in (super)string theory outside the critical dimension, and of the complementary approach based on the discretized space-time - known as the matrix model approach. The authors pay particular attention to supersymmetry, both in the continuum formulation and through the consideration of the super-eigenvalue problem. The methods presented here are important in a large number of complex problems, e.g. random surfaces, 2-D gravity and large-N quantum chromodynamics, and this comparitive study of the different methods permits a cross-evaluation of the results when both methods are valid, combined with new predictions when only one of the methods may be applied.