Ebene euklidische Geometrie: Algebraisierung, Axiomatisierung und Schnittstellen zur Schulmathematik

· ·
· Springer-Verlag
ebook
332
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

In diesem Lehrbuch stellen die Autoren einen axiomatischen Zugang zur ebenen Geometrie dar, der im Vergleich zu den Hilbertaxiomen und anderen oft gewählten Zugängen strukturelle und didaktische Vorteile bietet. Dieser auf metrischen Räumen basierende Zugang wird ausführlich motiviert und didaktisch aufbereitet. Ein besonderes Augenmerk liegt auf der besseren Verzahnung der Mathematikausbildung der Lehramtsstudierenden mit dem Schulstoff. In Ergänzung des axiomatischen Zugangs erklären die Autoren auch, wie man sich der ebenen Geometrie mit Mitteln der linearen Algebra nähern kann und stellen so den Bezug zur analytischen Geometrie der Oberstufe her.

Als weitere Schnittstellen zwischen Schulmathematik und axiomatischer Geometrie werden die Begriffe Kongruenz und Symmetrie vertieft und so wichtigen Zusammenhänge zwischen den Begriffen Isometrie, Kongruenz und Symmetrie transparent gemacht und in schultypische Kontexte eingebettet.

Σχετικά με τον συγγραφέα

Dr. Max Hoffmann ist Lehrer für Mathematik und Informatik. Aktuell forscht und lehrt er an der Universität Paderborn in der Mathematikdidaktik.
Prof. Dr. Joachim Hilgert ist Professor im Ruhestand an der Universität Paderborn und hat zuvor die Arbeitsgruppe "Lie-Theorie" geleitet.
Prof. Dr. Tobias Weich forscht und lehrt an der Universität Paderborn und leitet dort die Arbeitsgruppe "Spektralanalysis".

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.